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Gauge-invariant fluctuations of the metric in stochastic inflation

Mauricio Bellini*
Departamento de Bica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata,
Funes 3350, (7600) Mar del Plata, Buenos Aires, Argentina
(Received 8 June 1999; published 6 April 2000

| derive the stochastic equation for the perturbations of the metric for a gauge-invariant energy-momentum
tensor in stochastic inflation. A quantization for the field that describes the gauge-invariant perturbations for
the metric is developed. In a power-law expansion for the universe the amplitude for these perturbations on a
background metric could be very important in the infrared sector.

PACS numbegs): 98.80.Cq

During inflation vacuum fluctuations on scales less tharEinstein equations in terms @f and y, one obtains the sys-
the Hubble radius are magnified into classical perturbationgem of differential equations fog and y:
in the scalar fields on scales larger than the Hubble radius.

These classical perturbations in the scalar fields can then = (a3 4.\, 1 a (a\? a b
change the number aof folds of expansion and so lead to X+t z—2—|x— —ZVZ)(+ a2 \al “an x=0,
classical curvature and density perturbations after inflation. be a be

These density perturbations are thought to be responsible for 2
the formation of galaxies and the large scale structure of the
observable universe as well as, in combination with the 1d 4w .
gravitational waves produced during inflation, for the a ﬁ(aX)vﬁ:W(d’cqs)ﬁ’ )
anisotropies in the cosmic microwave background. P

In this report | consider the gauge-invariant fluctuations of 5 1
the metric on a globally flat Friedmann-Robertson-Walker |, 7% =+ o2 " / A L
(FRW) metric in the early inflationary universe. These metric ¢+3a¢ an PV (Pe) b+ 2V (b) X~ 4dex=0.
fluctuations are here considered in the framework of the lin- (4)
ear perturbative corrections. A nonlinear perturbative calcu-
lation for this issue was developed|[ib,2]. The scalar metric Here, the dynamics of. being described by the equations
perturbations of the metric are associated with density per-
turbations. These are the spin-zero projections of the gravi-

. a.
ton, which only exist in nonvacuum cosmologies. The issue bet 3¢tV () =0, )
of gauge invariance becomes critical when we attempt to
analyze how the scalar metric perturbations produced in the 2
very early universe influence of a globally flat isotropic and bo=— %H '(be) 6)
homogeneous universe. This allows us to formulate the prob- ¢ 4o O 77

lem of the amplitude for the scalar metric perturbations on
the evolution of the background FRW universe in awhere the prime denotes the derivative with respect{o
coordinate-independent manner at every moment in timeandH (¢.)=a/a. Equation(2) for y can be simplified with
Since the results do not depend on the gauge, the perturb% _ oli2f(ala—2¢ /pe)dt

; ) . ) maph=e Y
globally flat isotropic and homogeneous universe is well de-
scribed by{3]

: w2
ds?=(1+2¢)dt2—aZ(t)(1—2y)dx?, (1) i Loa l(a ¢C)
a? 4

2=
a ¢

wherea is the scale factor of the universe afidand y the

perturbations of the metric. | will consider the particular case d . . o
-2 Za(¢c¢c)_4¢c

where the tensof;; is diagonal, i.e., fory=1¢ [5]. As in a 1| aa—a
previous work[4] | consider a semiclassical expansion for -3 22 2
the scalar fieldp(x,t)= ¢(t) + d(x,t), with expectation &
values(E|¢|E)= ¢.(t) and(E|#|E)=0. Here,|E) is a un-
known state of the universe. Because(&fx|E)=0, the a (a\? aa
expectation value of the metricl) gives the background + ——(— —— —=| [ h=0. )
metric that describes a flat FRW spacetime. Linearizing the a \a/ ag¢.
The Eq.(7) is a Klein-Gordon equation for the redefined
*Email address: mbellini@mdp.edu.ar fluctuations of the metrith(i,t) in a curved spacetime de-
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fined with a flat FRW metric for the background. This field R
can be written as a Fourier expansion in terms of the modes  «(x,t)=

3/2fd kd(eko—K)[agh+alh*]. (15

he=€**&(t)
- The fluctuationd¢ will be classical if all the modeg, (for
— 3 Th* CG k
h(x,t)= Zﬂ)s/zf d k[ ahi+ayhic], (8) k<k,) are real6]. Thus, when

wherea, and al are the annihilation and creation operators Im(&)
(16)

with commutation relationay, a 1= 8®)(k—k"), and the Re(£,) <1,

asterisk denotes the complex conjugate. The matter field per-
turbations, written as a Fourier expansion, is

for 0<k<ek,, EqQ. (13) is a classical stochastic equation
1 ) that describes the gauge-invariant redefined fluctuations on
d(x,t)= (ZT)S”'J d°k[ay i+ axeic 1, (9 the IR sector. Whenk,)2(x2)<(ko)%(7%), one can neglect
the noisex with respect ton in Eq. (13). In this case one

where = k- Xuk(t) Due to the facty = i, the metric and obtain the following two first order stochastic equations for

matter perturbations are anticorrelated outside the horizonce"
£=— do(t) e VI @a-2dc/90dty [5]. The equation for the

time-dependent modes(t) is heg= ekon+u, (17)
bt wi( =0, (10 .
wherew,(t) is the time-dependent frequency for each mode u= 2 hce- (18)

with wave numbek: w2(t)=[k?/a®—k2/a%]. Here k(1) is
the time dependent wave number that separates the infrared
(IR) and the ultraviolet(UV) sectors. On super Hubble whereuis an auxiliar field. The Fokker-Planck equation for
scales,k?/a?<k?/a® and Eq.(10) for the time dependent the system (18) gives the transition probability
frequencies becomle|ndependentwk(t)~—k2(t)/a The  P(hce.u,tlhiR,u®,t,) for the universe, from the initial
commutation relation forh and h is [h(x,t),h(x’,t)]  configuration 6Ed.u®.to) to the (hcg,u.t) one
=i5®)(x—x') for && — &&F =i. When the modes become
real one obtaing, & — &£ =0 and the fieldh is classical P ﬂ_ k2 P . ko3 s
[6]. A t Yohce a2 CCau 4w Sk oh2g
Stochastic approachNow | consider the fieldh(x,t) on (19
the IR sector. Fork<ky(t) the coarse-grained fields
heo(X,t) and ¢eg(X,t) can be written as

Heisenberg representation for-g. Equation(13) can be
1 written as
hCG(i,t):—/J d3k 6(ek,—K)[aghe+afh? ],
(27)%7? (t)
11

Al heet &(X,1)=0, (20)

hCG

1 3 T %
5 | a3k O(eko—K)[axdy+axdi 1,

¢CG(X!t) = (277)

where &.(x,t) = — e[ (d/dt) (ko 7(%)) + 2k,«]. This noise be-
(12 comes from the short wavelength sector due to the cosmo-
logical evolution of both, the horizon and the scale factor of

wheree<1 is an dimensionless constant. Replacing®®)  he yniverse. The effective Hamiltonian associated with Eq.
in Eq. (7), one obtains the following stochastic equation for(zo) is

hee:

2 1 1
(13 Her(Nce ) =5 P%G+§M2(t)(hce)2+ éche, (21

d . .
a(koﬂ)"’ZkoK ,

i 0
Nee— _ZhCG: €
a

where the noisey and« are where Pog=hcg and u?(t) =k2/a®. Note thaté, plays the

role of an external classical stochastic force in the effective
f d3k(ek,—K)[agh+aih], (14  Hamiltonian(21). Thus, one can write the following Schro
dinger equation:

7]()2,'[) )3/2
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P 1 2 where
i_’q,(hCG,t): - A ‘{l(hCGat)
at 2 9(hew)? J|1-4K?
(hce) w(t)z—l T |In[t], 27

1 2 2
i 2" (hce)™+ Leheg| ¥ (hee.t), is the frequency of the scalar perturbations of the metric,
(22 which depends on timeCase (2) C;=C,: here the modes
are (for C,=|C4|)

whereW¥ (heg,t) is the wave function that characterize the 2) N o

system. Observe that generaliy(t) depends on time, and () =2|Cq|tY1+t™Ycog w(t)t]], (28)

the Hamiltonian(21) is nonconservative, also in the case in L .

which one would neglect the stochastic force. The only cas&"her_ew(t) IS glven_by Eq.(27). Note that lim__..w(t) —0
where u does not present time dependence is in a de Sitteg"d IM_o@(t)—< in both cases1) and(2). Case(1) de-

expansion of the universe. In this casds constant and Eq. scribes an oscillatory scalar perturbations of the metric with

(21) represents a harmonic oscillator with a stochastic exterSonStant amplitud¢C,| and an oscillation frequency that

nal forceé;. In this case we have a forced linear harmomcdecreases W'th_t'me' This means that for very larghe
oscillator and the solution is a coherent state with the dis-Scalar pe.rturbatlons of the metric OSC'"at?S very Slqu' Ce_lse
placement due to the action of the external force. The effect?) describes al/szcalar metric perturbations with increasing
tive Hamiltonian(21) describes an open system. This is due@MPlitude 2C4[t** but stop oscillating for very large In

to the fact that degrees of freedom of the infrared sector ard!iS c@se the amplitude for the metric perturbations become
constantly increasing since tlkg-temporal dependence.

very important with time in the IR sector. Thus, in the IR
The probability to find the universe with a givéigin a sector the amplitude for the metric fluctuationgee
given timet is

=t~ (P2*Dh 4 become

P(hcg,t) =¥ (hee, ) W* (o ) (23 2 U0 a0 12) )72

’ ’ o (Xce)= 62 JO dk KLEH(D)]?, (29
where the asterisk denotes the complex conjugate. .

Power-law expansiarNow | study the particular case of \yhich becomes
a power-law expansion for the universe. In this case the scale
factor is a(t)«(t/t,)?, and the Hubble parameter (XEo [ E12(1)]2tP5, (30
H ¢.(t)]=p/t. The temporal evolution of the background
field ¢¢ is ¢o(t)= > —min[(t/t;)p], where pP=g (t  Here &M?(t) denotes the time dependent modgét) for
=t,) — for t=t,. Here,m=(10 *—10 °) M, is the mass cases(1) and (2), respectively. Note thatx2s) increases
of the inflaton field. The map for the redefined fluctuatibns with time for p>5 in case(1), and for p>4 in case(2).
becomeh(x,t) =t(P2* 1y (x,t). Furthermore, one obtains Furthermore, the density fluctuations for the matter energy
density is[7] dp/p=—2y, so that

kc2> 1 2 _2 2\1/2
o__ = 1

=z (PPHep At (24) ( p; ) ORI (31)
In the IR sector one obtains the wavelength are greater th
the size of the horizodi.e., k-*>k_!(t)] and the term
k?/a? can be neglected with respect to the anotherldfa?

in the equation for the temporal modés. Hence, the gen-
eral solution foré, is

ince the metric and matter perturbations are anticorrelated
[£1D=— p (1)t~ P2 Dy(12] one can write the density
fluctuations in terms ofil? [see Eqgs(30) and (31)].

To summarize, a stochastic approach for the field that
describes the gauge-invariant perturbations for the metric
H=C was developed. These fluctuations describes an effective

&)= HamiltonianH ¢ for an harmonic oscillator with an effective
whereK2=1/4(p?+6p+4). It is well known that the fluc- time-dependent parameter of.makzgﬁaz and an external sto-
tuations in the infrared sector become classical. Thus, | wilEhastic force¢.. Finally, in this report | demonstrated that
consider that the conditiof‘k'g’k‘ —fkgﬁ —0 holds in this sec- the metric fluctuations can be very important on the IR sec-
tor. This implies thatC,;= *=C,. | consider the case where tqr, n a power-law.expandmg universe, yvhpn|§ suffi-
the universe expands very rapidips 1) ciently large. Thus, in a power-law expansion with lafge

Case (1) C Fi C.: iny thiz cgse the time dependent one obtains large amplitude for scalar perturbations of the

1= = 2

modes ardfor C;=—i|C4|) metric.

W _ M. Bellini thanks O. A. Sampayo and R. L. W. Abramo
& (H)=2|Cy|sif o(D)t], (26)  for fruitful discussions.

— - H -
1t1/2(1 ivl1 4|<2|)+Czt1/2(1+n\1 4|<2|, (25)
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