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Gauge-invariant fluctuations of the metric in stochastic inflation
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~Received 8 June 1999; published 6 April 2000!

I derive the stochastic equation for the perturbations of the metric for a gauge-invariant energy-momentum
tensor in stochastic inflation. A quantization for the field that describes the gauge-invariant perturbations for
the metric is developed. In a power-law expansion for the universe the amplitude for these perturbations on a
background metric could be very important in the infrared sector.

PACS number~s!: 98.80.Cq
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During inflation vacuum fluctuations on scales less th
the Hubble radius are magnified into classical perturbati
in the scalar fields on scales larger than the Hubble rad
These classical perturbations in the scalar fields can
change the number ofe folds of expansion and so lead t
classical curvature and density perturbations after inflat
These density perturbations are thought to be responsibl
the formation of galaxies and the large scale structure of
observable universe as well as, in combination with
gravitational waves produced during inflation, for th
anisotropies in the cosmic microwave background.

In this report I consider the gauge-invariant fluctuations
the metric on a globally flat Friedmann-Robertson-Walk
~FRW! metric in the early inflationary universe. These met
fluctuations are here considered in the framework of the
ear perturbative corrections. A nonlinear perturbative cal
lation for this issue was developed in@1,2#. The scalar metric
perturbations of the metric are associated with density p
turbations. These are the spin-zero projections of the gr
ton, which only exist in nonvacuum cosmologies. The iss
of gauge invariance becomes critical when we attemp
analyze how the scalar metric perturbations produced in
very early universe influence of a globally flat isotropic a
homogeneous universe. This allows us to formulate the p
lem of the amplitude for the scalar metric perturbations
the evolution of the background FRW universe in
coordinate-independent manner at every moment in ti
Since the results do not depend on the gauge, the pertu
globally flat isotropic and homogeneous universe is well
scribed by@3#

ds25~112c!dt22a2~ t !~122x!dx2, ~1!

wherea is the scale factor of the universe andc andx the
perturbations of the metric. I will consider the particular ca
where the tensorTi j is diagonal, i.e., forx5c @5#. As in a
previous work@4# I consider a semiclassical expansion f
the scalar fieldw(xW ,t)5fc(t)1f(xW ,t), with expectation
values^EuwuE&5fc(t) and^EufuE&50. Here,uE& is a un-
known state of the universe. Because of^EuxuE&50, the
expectation value of the metric~1! gives the background
metric that describes a flat FRW spacetime. Linearizing
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Einstein equations in terms off andx, one obtains the sys
tem of differential equations forf andx:

ẍ1S ȧ

a
22

f̈c

ḟc
D ẋ2

1

a2
¹2x1F ä

a
2S ȧ

a
D 2

2
ȧ

a

f̈c

ḟc
Gx50,

~2!

1

a

d

dt
~ax! ,b5

4p

M p
2 ~ḟcf! ,b , ~3!

f̈13
ȧ

a
ḟ2

1

a2
¹2f1V9~fc!f12V8~fc!x24ḟcẋ50.

~4!

Here, the dynamics offc being described by the equation

f̈c13
ȧ

a
ḟc1V8~fc!50, ~5!

ḟc52
M p

2

4p
Hc8~fc!, ~6!

where the prime denotes the derivative with respect tofc

andHc(fc)[ȧ/a. Equation~2! for x can be simplified with
the maph5e1/2*(ȧ/a22f̈c /ḟc)dtx

ḧ2
1

a2
¹2h1H 1

4 S ȧ

a
22

f̈c

ḟc
D 2

2
1

2
S äa2ȧ2

a2
2

2
d

dt
~f̈cḟc!24ḟc

2

ḟc
2

D
1F ä

a
2S ȧ

a
D 2

2
ȧ

a

f̈c

ḟc
G J h50. ~7!

The Eq. ~7! is a Klein-Gordon equation for the redefine
fluctuations of the metrich(xW ,t) in a curved spacetime de
©2000 The American Physical Society01-1
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fined with a flat FRW metric for the background. This fie
can be written as a Fourier expansion in terms of the mo
hkW5eikW•xWjk(t)

h~xW ,t !5
1

~2p!3/2E d3k@akhk1ak
†hk* #, ~8!

whereak andak
† are the annihilation and creation operato

with commutation relations@akW ,akW8
†

#5d (3)(kW2kW8), and the
asterisk denotes the complex conjugate. The matter field
turbations, written as a Fourier expansion, is

f~xW ,t !5
1

~2p!3/2E d3k@akfk1ak
†fk* #, ~9!

wherefkW5eikW•xWuk(t). Due to the factx5c, the metric and
matter perturbations are anticorrelated outside the hor
jk52fc(t) e21/2*(ȧ/a22f̈c /ḟc)dt uk @5#. The equation for the
time-dependent modesjk(t) is

j̈k1vk
2~ t !jk50, ~10!

wherevk(t) is the time-dependent frequency for each mo
with wave numberk: vk

2(t)5@k2/a22ko
2/a2#. Here,ko(t) is

the time dependent wave number that separates the infr
~IR! and the ultraviolet~UV! sectors. On super Hubbl
scales,k2/a2!ko

2/a2 and Eq. ~10! for the time dependen
frequencies becomek independent:vk

2(t).2ko
2(t)/a2. The

commutation relation forh and ḣ is @h(xW ,t),ḣ(xW8,t)#

5 id (3)(xW2xW8) for jkj̇k* 2 j̇kjk* 5 i. When the modes becom

real one obtainsjkj̇k* 2 j̇kjk* 50 and the fieldh is classical
@6#.

Stochastic approach. Now I consider the fieldh(xW ,t) on
the IR sector. For k!ko(t) the coarse-grained field
hCG(xW ,t) andfCG(xW ,t) can be written as

hCG~xW ,t !5
1

~2p!3/2E d3k u~eko2k!@akhk1ak
†hk* #,

~11!

fCG~xW ,t !5
1

~2p!3/2E d3k u~eko2k!@akfk1ak
†fk* #,

~12!

wheree!1 is an dimensionless constant. Replacing Eq.~11!
in Eq. ~7!, one obtains the following stochastic equation f
hCG:

ḧCG2
ko

2

a2
hCG5eF d

dt
~ k̇oh!12k̇okG , ~13!

where the noisesh andk are

h~xW ,t !5
1

~2p!3/2E d3kd~eko2k!@akhk1ak
†hk* #, ~14!
10730
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k~xW ,t !5
1

~2p!3/2E d3kd~eko2k!@akḣk1ak
†ḣk* #. ~15!

The fluctuationshCG will be classical if all the modesjk ~for
k!ko) are real@6#. Thus, when

UIm~jk!

Re~jk!
U!1, ~16!

for 0,k,eko , Eq. ~13! is a classical stochastic equatio
that describes the gauge-invariant redefined fluctuations
the IR sector. When (k̇o)2^k2&!( k̈o)2^h2&, one can neglect
the noisek with respect toh in Eq. ~13!. In this case one
obtain the following two first order stochastic equations
hCG:

ḣCG5e k̇oh1u, ~17!

u̇5
ko

2

a2
hCG, ~18!

whereu is an auxiliar field. The Fokker-Planck equation f
the system ~18! gives the transition probability
P(hCG,u,tuhCG

(0) ,u(0),to) for the universe, from the initial
configuration (hCG

(0) ,u(0),to) to the (hCG,u,t) one

]P

]t
52u

]P

]hCG
2

ko
2

a2
hCG

]P

]u
1

e3k̇oko
2

4p
jeko

2 F ]2P

]hCG
2 G .

~19!

Heisenberg representation for hCG. Equation~13! can be
written as

ḧCG2Fko~ t !

a~ t ! G2

hCG1jc~xW ,t !50, ~20!

wherejc(xW ,t)52e@(d/dt)( k̇oh (c))12k̇ok#. This noise be-
comes from the short wavelength sector due to the cos
logical evolution of both, the horizon and the scale factor
the universe. The effective Hamiltonian associated with
~20! is

Heff~hCG,t !5
1

2
PCG

2 1
1

2
m2~ t !~hCG!21jchCG, ~21!

wherePCG[ḣCG and m2(t)5ko
2/a2. Note thatjc plays the

role of an external classical stochastic force in the effect
Hamiltonian~21!. Thus, one can write the following Schro¨-
dinger equation:
1-2
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i
]

]t
C~hCG,t !52

1

2

]2

]~hCG!2
C~hCG,t !

1F1

2
m2~ t !~hCG!21jchCGGC~hCG,t !,

~22!

whereC(hCG,t) is the wave function that characterize th
system. Observe that generallym(t) depends on time, and
the Hamiltonian~21! is nonconservative, also in the case
which one would neglect the stochastic force. The only c
wherem does not present time dependence is in a de S
expansion of the universe. In this casem is constant and Eq
~21! represents a harmonic oscillator with a stochastic ex
nal forcejc . In this case we have a forced linear harmon
oscillator and the solution is a coherent state with the d
placement due to the action of the external force. The ef
tive Hamiltonian~21! describes an open system. This is d
to the fact that degrees of freedom of the infrared sector
constantly increasing since theko-temporal dependence.

The probability to find the universe with a givenhCG in a
given timet is

P~hCG,t !5C~hCG,t !C* ~hCG,t !, ~23!

where the asterisk denotes the complex conjugate.
Power-law expansion. Now I study the particular case o

a power-law expansion for the universe. In this case the s
factor is a(t)}(t/to)p, and the Hubble paramete
Hc@fc(t)#5p/t. The temporal evolution of the backgroun
field fc is fc(t)5fc

(o)2m ln@(t/to)p#, where fc
(o)[fc(t

5to) — for t>to . Here,m.(102421026) M p is the mass
of the inflaton field. The map for the redefined fluctuationh

becomeh(xW ,t)5t (p/211)x(xW ,t). Furthermore, one obtains

ko
2

a2
52

1

4
~p216p14!t22. ~24!

In the IR sector one obtains the wavelength are greater
the size of the horizon@i.e., k21@ko

21(t)] and the term
k2/a2 can be neglected with respect to the another oneko

2/a2

in the equation for the temporal modesjk . Hence, the gen-
eral solution forjk is

jk~ t !.C1t1/2(12 iAu124K2u)1C2t1/2(11 iAu124K2u), ~25!

whereK251/4(p216p14). It is well known that the fluc-
tuations in the infrared sector become classical. Thus, I
consider that the conditionjkj̇k* 2 j̇kjk* 50 holds in this sec-
tor. This implies thatC156C2. I consider the case wher
the universe expands very rapidly (p@1)

Case (1), C152C2: in this case the time depende
modes are~for C152 iuC1u)

jk
(1)~ t !.2uC1usin@v~ t !t#, ~26!
10730
e
er

r-

-
c-

re

le

an

ll

where

v~ t !5
Au124K2u

2t
ln@ t#, ~27!

is the frequency of the scalar perturbations of the met
which depends on time.Case (2), C15C2: here the modes
are ~for C15uC1u)

jk
(2)~ t !.2uC1ut1/2

†11t21/2cos@v~ t !t#‡, ~28!

wherev(t) is given by Eq.~27!. Note that limt→`v(t)→0
and limt→0v(t)→` in both cases~1! and ~2!. Case~1! de-
scribes an oscillatory scalar perturbations of the metric w
constant amplitudeuC1u and an oscillation frequency tha
decreases with time. This means that for very larget the
scalar perturbations of the metric oscillates very slowly. C
~2! describes a scalar metric perturbations with increas
amplitude 2uC1ut1/2 but stop oscillating for very larget. In
this case the amplitude for the metric perturbations beco
very important with time in the IR sector. Thus, in the I
sector the amplitude for the metric fluctuationsxCG
5t2(p/211)hCG become

^xCG
2 &.

t2(p12)

6p2 E
0

ko(t)

dk k2@jk
(1,2)~ t !#2, ~29!

which becomes

^xCG
2 &}@jk

(1,2)~ t !#2tp25. ~30!

Here jk
(1,2)(t) denotes the time dependent modesjk(t) for

cases~1! and ~2!, respectively. Note that̂xCG
2 & increases

with time for p.5 in case~1!, and for p.4 in case~2!.
Furthermore, the density fluctuations for the matter ene
density is@7# dr/r522x, so that

^~dr!2&1/2

r
u IR}^xCG

2 &1/2. ~31!

Since the metric and matter perturbations are anticorrela
@jk

(1,2)52fc(t)t
2(p/211)uk

(1,2)#, one can write the density
fluctuations in terms ofuk

(1,2) @see Eqs.~30! and ~31!#.
To summarize, a stochastic approach for the field t

describes the gauge-invariant perturbations for the me
was developed. These fluctuations describes an effec
HamiltonianHeff for an harmonic oscillator with an effectiv
time-dependent parameter of massko

2/a2 and an external sto
chastic forcejc . Finally, in this report I demonstrated tha
the metric fluctuations can be very important on the IR s
tor, in a power-law expanding universe, whenp is suffi-
ciently large. Thus, in a power-law expansion with largep,
one obtains large amplitude for scalar perturbations of
metric.

M. Bellini thanks O. A. Sampayo and R. L. W. Abram
for fruitful discussions.
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